Assessment Schedule - 2005

Physics: Demonstrate understanding of electricity and electromagnetism (90257)

Evidence Statement

Q	Evidence	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
1(a)	Right to left (chair to spray gun).	¹ Correct answer.		
1(b)	Charge = no. of electrons × charge of each electron = $3.0 \times 10^6 \times 1.60 \times 10^{-19}$	² Correct factors using data are shown (ignore presence or absence of –ve sign on charge).		
1(c)	$F = Eq E = \frac{V}{d}$ $F = \frac{Vq}{d}$ $F = \frac{110 \times 10^{3} \times 4.8 \times 10^{-13}}{0.65}$ $F = 8.1 \times 10^{-8} \text{ N}$	² Evidence of electric field calculation and a substitution $E = \frac{V}{d} = \frac{110 \times 10^3}{0.65}$ (ignore × 10 ⁻³)	² Equations are combined correctly. ² Force is calculated using correct E or q $F = Eq$ $F = 1.69 \times 10^{5}$ $\times -4.8 \times 10^{-13}$ $(q = -1.6 \times 10^{-19})$	² Merit <i>plus</i> correct answer.
1(d)	The force will increase. If the length of the field decreases, and the voltage remains the same, the field strength will increase. ($E = \frac{V}{d}$) A stronger field causes a greater force. ($F = Eq$)	¹ Force increases. ¹ Electric Field increases ¹ $F = \frac{V}{d}q$ given.	¹ TWO correctly linked ideas ¹ Electric field correctly linked to distance ¹ Force vs $\frac{1}{d}$ given.	¹ THREE ideas linked correctly. Correct statement linking less distance, more Electric Field and more Force. ¹ Force increases as distance decreases if <i>V</i> & <i>q</i> constant.
1(e)	$V = \frac{\Delta E_p}{q}$ $\Delta E_p = Eqd$ $\Delta E_p = F.d$ $\Delta E_p = Vq$ $= 110 \times 10^3 \times 4.8 \times 10^{-13}$ $= 5.28 \times 10^{-8} \text{ J} = 5.3 \times 10^{-8} \text{ J}$ Rate of flow of charge / electrons.	² Valid equation and a substitution (ignore × 10 ³) (force from 1c)	² Correct answer.	
-(1)	Zame of from of charge, cloud one.	indication of Coulomb per second.		
1(g)	$I = \frac{Q}{t}$ $I = \frac{6.5 \times 10^{5}}{60} \text{ drops / s} \times 8.0 \times 10^{-13} \text{ C / drop}$ $= 8.7 \times 10^{-9} \text{ C/s (A)}$	$\frac{8 \times 10^{-13}}{60}$ $\frac{2 \cdot 6.5 \times 10^{5} \times 8 \times 10^{13}}{1}$ (Ignore presence or absence of –ve sign on charge).	² Correct equation, substitution and answer. (Ignore presence or absence of –ve sign on charge).	

Q	Evidence	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
1(h)	F = Bvq = 7.10 × 10 ⁻⁵ T × 12.1 × 4.8 × 10 ⁻¹³ = 4.1 × 10 ⁻¹⁶ N	² Correct formula and substitution. (ignore × 10 ⁻³ , mT)	² Correct answer.	
	Answer to 2 significant figures.	¹ Answer to 2 significant figures.		
1(i)	Clockwise circular path.	¹ Correct direction (downwards).	¹ Correct direction and continuous shape (curved).	
2(a)	$I = \frac{V}{R}$ $= 6.0/1.2$	² Correct substitution.		
2(b)	$P = V \times I$ = 6.0 × 5.0 = 30 W	² Correct answer.		
		¹ Correct unit.		
2(c)	When the switch is closed, the current quickly increases, the lamp filament quickly heats up, the resistance increases, so the current will decrease to	¹ Current increases. ¹ Reaches a steady value.	¹ Correctly links TWO ideas.	¹ Correctly links THREE connected ideas in a clear explanation.
	a steady value. (Must discuss the headlamp only.)	¹ Bulb heats up. ¹ Resistance increases. ¹ Current decreases.	(Changing current qualified.)	

Q	Evidence	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
2(d)	The headlamp draws 5.0 A. The tail lamps are in parallel so must draw 1 A. Therefore their combined resistance is: $R = \frac{V}{I}$ $= \frac{6.0}{1}$ $= 6.0 \Omega$ each tail lamp is therefore 3.0 Ω . ALTERNATIVELY $I = 6.0 \text{ A}$ $V = 6.0 \text{ V}$ $R = \frac{V}{I} = \frac{6}{6} = 1.0 \Omega$ For parallel resistors:	² Resistance of each tail light is $\frac{1}{2}$ total resistance of the branch ² Calculation of correct current (1A) ² 3 V across each tail light ² 3 (unjustified) ² Calculation of total resistance as 1.0 Ω.	 TWO correct calculations. Calculation of total R in the tail light branch as 6.0 Ω. Correct use of V/I to find R_{Tail light} Correct substitution in parallel resistors formula. R_{Tail light} 1:5 	² Correct answer.
	$\frac{1}{R_{\rm I}} = \frac{1}{R_{\rm I}} + \frac{1}{R_{\rm 2}} = \frac{1}{R_{\rm headlamp}} + \frac{1}{R_{\rm taillamps}}$ $\Rightarrow \frac{1}{1.0} = \frac{1}{1.2} + \frac{1}{R_{\rm TLS}}$ $\Rightarrow \frac{1}{R_{\rm TLS}} = \frac{1}{1.0} - \frac{1}{1.2} = \frac{1.2 - 1.0}{1.2} = \frac{0.2}{1.2}$ $\Rightarrow R_{\rm TLS} = \frac{1.2}{0.2} = 6.0$ Each lamp is therefore 3.0 Ω	5:1	1.2 : 6 □	2 $^{6}/_{2} = 3 \Omega$
3(a)	$V = BvL \times 2 \times 45$ = 0.070 \times 12 \times 0.085 \times 90 = 6.4 V	² Correct equation and substitution of correct side.(Ignore length unit)	² Calculates voltage using the correct side. (Forgets to multiply by 45 turns or by 2 sides).	² Correct answer.
3(b)	V = 0 Coil is moving parallel to the field.	¹ V=0 ¹ Parallel to magnetic field	¹ Correct answer and reason.	
3(c)		¹ Correct symbol (ignore polarity).		
3(d)	 The generator produces an alternating current. The battery needs a current in one direction to charge it. The diode only allows current to flow one way. 	¹ The generator produces an alternating current. ¹ The battery needs a current in one direction to charge it. ¹ The diode only allows current to flow one way.	¹ Correctly links TWO ideas.	All THREE ideas linked correctly in a clear explanation.

Q	Evidence	Evidence contributing to Achievement	Evidence contributing to Achievement with Merit	Evidence contributing to Achievement with Excellence
3(e)		¹ Sinusodial ¹ Starts at max./min. V.	¹ Cosine or negative cosine graph. ¹ Correctly draws graph showing effect of the diode (above or below axis). (Ignore period.)	

Judgement Statement

Judgement Statement

Physics: Demonstrate understanding of electricity and electromagnetism (90257)

Criterion 1

Achievement	Achievement with Merit	Achievement with Excellence
FIVE opportunities answered at Achievement level or higher.	SIX opportunities answered with TWO at Merit level or higher, and FOUR at Achievement level.	SEVEN opportunities answered with ONE at Excellence level and TWO at Merit level and FOUR at Achievement level.
5 × A1	2 × M1 plus 4 × A1	1 × E1 plus 2 × M1 plus 4 × A1

Criterion 2

Achievement	Achievement with Merit	Achievement with Excellence
FIVE opportunities answered at Achievement level or higher.	SEVEN opportunities answered with THREE at Merit level or higher, and FOUR at Achievement level.	EIGHT opportunities answered with ONE at Excellence level and THREE at Merit level and FOUR at Achievement level.
5 × A2	3 × M2 plus 4 × A2	1 × E2 plus 3 × M2 plus 4 × A2